
Shear viscosity along the liquid–vapour coexistence

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys.: Condens. Matter 14 8415

(http://iopscience.iop.org/0953-8984/14/36/301)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 18/05/2010 at 12:33

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/14/36
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 14 (2002) 8415–8423 PII: S0953-8984(02)34939-7

Shear viscosity along the liquid–vapour coexistence

S M Osman1, I Ali and R N Singh

Physics Department, College of Science, Sultan Qaboos University, PO Box 36, PC 123,
Sultanate of Oman

E-mail: osm@squ.edu.om

Received 15 March 2002, in final form 17 June 2002
Published 29 August 2002
Online at stacks.iop.org/JPhysCM/14/8415

Abstract
An analytical expression for the shear viscosity of a fluid with particles
interacting via pairwise interaction of hard spheres plus an attractive Yukawa
potential is presented. The impact of the kinetic pressure has been included
following the thermodynamic energy equation and a non-empirical equation
of state based on the inverse temperature expansion of the free energy from
the mean spherical approximation. Viscosity is computed along the liquid–
vapour coexistence curves for different ranges of attractive interactions. The
viscosity’s dependence on density and temperature up to the critical point
has been investigated. The surface tension under similar conditions is also
calculated and, therefore, the relation between surface tension and viscosity
along the coexistence curve is established. The validity of the Arrhenius type
empirical equation depicting the temperature dependence of viscosity in the
vicinity and away from the critical point is also examined.

1. Introduction

Viscosity is the manifestation of fluid friction. The presence of a velocity gradient in the fluid
amounts to a diffusion of momentum due to transfer of moving molecules from the higher
velocity layer to the lower velocity layer, and vice versa. In addition to its key role in grasping
the problems of fluid flow, it is also related to the kinetics of reactions and nucleations in
material processing.

In the past, considerable effort has been made to derive semi-empirical relations (for
reviews see [1, 2]) based on phenomenological parameters. From the theoretical standpoint,
expressions for viscosity have been formulated [3] on the basis of equilibrium statistical
mechanical theory in terms of the pair distribution function, g(r), and the pair potential, φ(r).
As regards the dynamical approach, the time evolution of the distribution function cannot
be precisely described. Consequently, various approximate expressions have been proposed
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based on different concepts. According to Longuet-Higgins and Pople [4], the shear viscosity,
η, of a dense hard sphere fluid is given as

η = 2σ

5

(
M

πβ

)1/2

ρ

(
β P

ρ
− 1

)
. (1)

σ and M are the hard sphere diameter and mass, respectively. ρ represents the number density,
β−1 = kB T (where kB is the Boltzmann constant), T is temperature and P is pressure. The
main thrust is to improve equation (1) for dense realistic fluids with attractive forces. We follow
the approach of Brown and March [5] who suggested that the pressure P in the right-hand side
of equation (1) should be replaced by the kinetic pressure, i.e. T (∂ P/∂T ). Then, following
the thermodynamic energy equation one can readily improve equation (1) for energetic effects,
i.e.

P → T

(
∂ P

∂T

)
V

= P +

(
∂U

∂V

)
T

, (2)

where U stands for energy. Equation (2) paves the way to incorporate the effect of attractive
forces on the viscosity.

In this work, we consider a single component fluid with particles interacting via pairwise
interaction of hard spheres plus an attractive Yukawa potential. There is ample evidence in
the literature [6, 7] that the Yukawa potential is quite suitable to incorporate the long range
correlations and provides accurate thermodynamic properties of simple classical fluids. The
advantage of using the Yukawa potential is that it provides an analytical expression for the
equation of state (EOS), thus disposing of the uncertainties involved with numerical derivatives.
This has allowed us to investigate the role of the attractive part of the potential on viscosity
along the liquid–vapour (l–v) coexistence curve.

Another advantage is that a reliable analytical EOS for a fluid whose molecules interact
via the Yukawa potential with a hard core is available. This is based [8, 9] on the inverse
temperature expansion of the free energy from the mean spherical approximation. The equation
of state yields an excellent description of the pressure and of the critical point properties when
compared with simulation results. The expression of viscosity for the hard core Yukawa fluid in
terms of expansion coefficients is given in section 2. Viscosity calculated along the line of the
l–v coexistence curve is presented in section 3, where its dependence on density, temperature
and long range interaction is discussed. Section 4 describes the calculation of surface tension
under similar conditions and, therefore, the relation between surface tension and viscosity
along the coexistence curve is examined. The Arrhenius type empirical equation depicting
the temperature dependence of viscosity is discussed in section 5. A summary and conclusion
follow in section 6.

2. Expression for viscosity for hard core Yukawa fluid

The pair potential of a hard core Yukawa fluid consists of a short range repulsion (normally
the hard sphere potential) and a long range attractive Yukawa tail,

φ(r) =




∞ r � σ

−εσ

r
exp

[
λ

(
r

σ
− 1

)]
r � σ

(3)

where σ is the hard sphere diameter and ε is the depth of the potential. The inverse range
parameter λ controls the decay of the attractive potential. With suitably chosen parameters,
this form of the potential provides a close fit to the empirical potentials widely used in the
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simulation work. Further, it facilitates obtaining an analytical expression for the Helmholtz
free energy within the mean spherical approximation.

In recent works by Henderson et al [8] and Duh and Y-Téran [9], an explicit analytical
formula for the free energy, F , of a hard core Yukawa fluid is given as a series expansion up
to five terms,

β F = β F0 − 1

2

5∑
n=1

Vn

nT n
. (4)

The corresponding pressure equation becomes

β P

ρ
= β P0

ρ
− y

2

5∑
n=1

1

nT n

∂Vn

∂y
, (5)

where y is the packing fraction. Vn are the expansion coefficients whose explicit expressions
can be found in [9].

F0 and P0 are, respectively, the free energy and pressure of the hard sphere reference
system. Baus and Colot [10] used the virial series expansion for the EOS and rescaled to
obtain a general form for the hard sphere fluid, given as

β P0

ρ
= 1 + y + y2 − ay3 − by4

(1 − y)3
, (6)

where a and b are scaling parameters. It can be seen that some of the famous theoretical
expressions, like Percus–Yevick (a = b = 0) and Carnahan–Starling (a = 1, b = 0) equations,
are obtained readily from equation (6). In the present work we take a = b = 2/3 because
it gives better agreement when compared to the very precise (MC-MD) simulation results of
Erpenbeck and Wood [11].

The free energy, F0, corresponding to pressure equation (6) has been obtained here by
solving the integral equation

β F0 = β Fideal +
∫ (

β P0

ρ

)
dy

y
, (7)

where Fideal is the free energy of an ideal gas. On substituting equation (6) into (7) we obtain

β F0 = −1 − 3
2 ln T ∗ + ln ρ∗ + (a − 3b − 1) ln(1 − y∗)

+
(6 + 2a + 6b)y∗ − (3 + 3a + 9b)y∗2 + 2by∗3

2(1 − y∗)2
. (8)

T ∗, ρ∗ and y∗ are expressed in reduced units,

T ∗ = kB T

ε
, ρ∗ = ρσ 3, y∗ = π

6
ρ∗σ ∗3. (9)

Having defined all the terms in the free energy expression (4) for a hard core Yukawa fluid,
the internal energy, U , can be obtained via the standard thermodynamic relation

U = −T 2 ∂

∂T

(
F

T

)
ρ

. (10)

On using equations (4) and (10) in (1) and (2), we obtain the expression for the viscosity of a
hard core Yukawa fluid,

η∗ = 2

5

(
T ∗

π

)2

ρ∗
[
β P0

ρ∗ − 1 +
y

2

5∑
n=1

1

nT ∗n

∂Vn

∂y

(
1 − 1

n

)]
(11)

with

η∗ = ησ 2

(Mε)1/2
. (12)
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Figure 1. Hard core Yukawa potential with various values of the interaction range, x0.

3. Viscosity along the line of the coexistence curves

Here we study the dependence of viscosity on liquid density and temperature along the l–v
coexistence curves for different sets of long range interactions. These curves are obtained by
solving numerically the simultaneous equations

P(ρ∗
l , T ∗) = P(ρ∗

v , T ∗)
µ(ρ∗

l , T ∗) = µ(ρ∗
v , T ∗).

(13)

The pressure, P , can be obtained from equation (5). The chemical potential, µ, is related to
F and P by

βµ = β F − β P

ρ
. (14)

To show the impact of the potential range parameter, λ, we have used the scaled parameter, x0,
introduced by Tejero et al [12],

λ = ln(100/x0)

x0 − 1
, (15)

where x0 is defined as the range of attractive potential at which φ(x0) = −0.01ε

(cf equation (3)). The Yukawa potential with various values of the range parameter x0 is
shown in figure 1. It is evident that by changing x0 the Yukawa potential can be used to model
many different forms of long range interactions. It is now used via equations (13), (14) and (4)
to calculate the l–v coexistence curves. The calculated results for different values of x0 are
plotted in figure 2. The shape of the curves, critical temperature (Tc) and critical density (ρc)
depend strongly on the range of the attractive potential. Tc increases while ρc decreases with
increasing range of the attractive potential.

These results are then used in equation (11) to investigate the impact of long attractive
interaction on viscosity. The attractive Yukawa potential enters the calculation through the
expansion coefficients Vn which are functions of λ and, hence, x0 (we may recall that the
larger values of x0 account for long range attractions). The calculated η∗ as a function of
reduced liquid density (ρ∗

l /ρ∗
c ) are plotted in figures 3(a) and (b). For a better visualization of
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Figure 2. l–v coexistence curves for hard core Yukawa fluid for different values of interaction
range, x0.

the dependence of viscosity on density and x0, one should refer to the l–v coexistence curves of
figure 2. It is evident that x0 affects the l–v coexistence phase densities considerably. Higher
x0 (say >3) refers to a smaller range of density for the l–v coexistence region in contrast to
lower x0. As x0 decreases (say to <3), the curves flatten and the l–v coexistence density region
increases considerably. The asymmetry of the curves shifts towards the liquid phase and,
hence, the liquid phase density increases sharply with decreasing x0. For clarity, the effect of
the two different regions of x0 (x0 � 4 and x0 � 3) on viscosity is shown in figures 3(a) and (b)
separately. The sharp gradient of viscosity in figure 3(a) for smaller x0 is a manifestation that
the fluid phase is approaching solidification. Further, figure 3 indicates that as the density tends
to its critical value (ρ∗

l → ρ∗
c ), the viscosity approaches a minimal value where the effect of

x0 is comparatively small.
The temperature dependence (T ∗/T ∗

c ) of viscosity is shown in figure 4. Viscosity
decreases with increasing temperature. The effect of long range interaction on viscosity
is higher at lower temperature (T ∗ < T ∗

c ). As one approaches the critical temperature
(T ∗ → T ∗

c ), η∗ falls to its minimum value. It is interesting to observe that the long range
interactions do not affect the viscosity appreciably near T ∗

c .
The results of viscosity calculated at a given isotherm are shown in figure 5 for x0 = 3.

For isotherms T ∗ > T ∗
c , η∗ increases with density. On the other hand, for isotherms T ∗ < T ∗

c ,
the dependence of η∗ exhibits mixed behaviours. For the vapour-rich phase (small ρ∗), η∗ first
increases with ρ∗. For l–v mixed phases (metastable state), η∗ becomes negative, which has no
physical meaning. As density ρ∗ → ρ∗

l , η∗ once again increases with the liquid phase density.

4. Ratio of viscosity and surface tension

The statistical mechanical approach of Fowler [13] allows us to express the surface tension,
γ , in terms of the radial distribution function g(r) and the pair potential φ(r) as

γ = π

8
ρ2

∫ ∞

0
r4 ∂φ(r)

∂r
g(r) dr. (16)



8420 S M Osman et al

Figure 3. Viscosity, η∗, against reduced density, ρ∗
l /ρ∗

c . ρ∗
l is the liquid density along the

coexistence curve and ρ∗
c is the critical density for a given x0. (a) x0 � 3. (b) x0 � 4.

Figure 4. Viscosity, η∗, against reduced temperature, T ∗/T ∗
c . T ∗ is the temperature corresponding

to liquid density along the coexistence curve and T ∗
c is the critical temperature for a given x0.

Ali et al [14] have solved the above equation analytically for the Yukawa potential resulting in

γ ∗ = πρ∗2

8
[λG ′′(λ) − G ′(λ)]. (17)

Here, G(λ) is the Laplace transform of g(r), i.e.

G(λ) =
∫ ∞

0
xg(x)e−λx dx (18)
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Figure 5. Viscosity, η∗, versus density for isotherms at T ∗ = 0.87T ∗
c and 1.17T ∗

c for x0 = 3.

with

x = r

σ
and γ ∗ = γ σ 3

ε
. (19)

G ′(λ) and G ′′(λ) in equation (17) are the first and second derivatives, respectively, of G(λ) with
respect to λ. We may recall that the viscosity expression of Born and Green [3] also involves a
similar integrand as in equation (16). Therefore, viscosity and surface tension expressions are
intimately related. Following March [15], one can readily eliminate the integral to show that

γ ∗

η∗ = constant

√
T ∗

T ∗
c

. (20)

In order to examine the validity of equation (20), we have plotted (figure 6) γ ∗/η∗ as a function
of (T ∗/T ∗

c )1/2 for different values of x0. γ ∗ has been calculated from equation (17) for different
values of T ∗. All other inputs are common for the calculations of γ ∗ and η∗. It can be readily
seen from figure 6 that γ ∗/η∗ remains pretty constant as a function of (T ∗/T ∗

c )1/2. Variation is
observed for smaller values of x0 in the region T ∗ < T ∗

c , which appears due to the flat nature of
the l–v coexistence curve (figure 2). The value of the constant depends strongly on x0. Larger
x0 gives greater values of the ratio γ ∗/η∗. March [15] has interpreted this ratio as an outcome
of the thermal velocity of the atoms.

5. Arrhenius type relationship along the coexistence curves

It has always been of considerable significance to examine the empirical equation depicting the
temperature dependence of viscosity. Befitting our approach, we have examined the empirical
dependence of viscosity on temperature along the l–v coexistence curves. The plot of ln η∗
as a function of T ∗

c /T ∗ is shown in figure 7 for different values of x0. It exhibits a linear
relationship over a wide range of temperature. However, in a narrow band of temperature near
T ∗ ≈ T ∗

c , it differs from straight line behaviour. Deviation from linearity has also been noticed
by Singh and Sommer [16] for demixing liquid alloys as T ∗ → T ∗

c .
Viscosity decreases as T ∗ → T ∗

c , but there is little dependence on x0 near T ∗
c . All the

curves tend to merge to a small value of η∗ at T ∗ = T ∗
c . The linear relationship between ln η∗
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Figure 6. Ratio (γ ∗/η∗) of the surface tension γ ∗ and viscosity η∗ versus (T ∗/T ∗
c )1/2 for

different x0.

Figure 7. ln η∗ versus temperature, T ∗
c /T ∗, for different x0.

and T ∗
c /T ∗ can safely be approximated to an Arrhenius type relation, i.e.

η∗ = A exp

(
B

T ∗
c

T ∗

)
, (21)

where A and B are constants. An equation like (21) has been very successful in explaining
the temperature dependence of viscosity for both classical and metallic liquids. Often B is
interpreted as activation energy which in our approach depends on x0, a measure of the inter-
particle correlations. It is evident from figure 7 that the empirical relation (21) works very well
below T ∗ < T ∗

c , along the l–v coexistence curve. Near T ∗
c , the Arrhenius type relationship

breaks down.
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6. Summary and conclusion

High temperature expansion of the Helmholtz free energy and an improved version of the
EOS are used to obtain an analytical expression for the viscosity of the hard core Yukawa
fluid. Viscosity is calculated along the l–v coexistence curves and its dependence on density
and temperature is discussed up to the critical point. The effect of the long ranged attractive
interactions on viscosity is quite significant at higher densities. As density and temperature
tend to the critical values (ρ∗

l → ρ∗
c , T ∗ → T ∗

c ), the viscosity decreases and approaches
a minimum value where the effect of the long range interactions is also small. Within our
formalism, it has become possible to calculate the ratio of viscosity to surface tension along
the l–v coexistence curve. Our results indicate that the ratio of γ ∗/η∗ remains pretty constant
as a function of (T ∗/T ∗

c )1/2, with some variation for low x0 values. As for the empirical
relationship between viscosity and temperature, this work suggests that the Arrhenius type
relation works very well for T ∗ < T ∗

c , while it breaks down as one approaches T ∗
c .
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